
7RD-R147 184 DEBUG TESTING ND CONFIDENCE TESTING(U)
MARYLAND UNIV ii

I COLLEGE PARK DEPT OF COMPUTER SCIENCE D HAMLET AUG 84
I CS/E-84-004 RFOSR-TR-84-0867 F49620-80-C-0004pUNCLASSIFIED F/G 9/2 N

1.0 t

L3.6

1.1 L ~ 1.8

111125 111'.4 ___

XO .TR. 84.0 867

I Tecinical Report CSIE 84-004 August, 1984

DEBUG TESTING AND CONFIDENCE TESTINg;

Dick Hamlet
Oregon Graduate Center

DOI
SoNOV 1 1984

Lid

CD OREGON GRADUATE CENTER -'s'-

LL, 19600 N.W. WALKER ROAD !o?
BEAVERTON, OREGON 97006

CA . -

Accession For

NTIS GRA&I -
DTIC TAB [
Unannounced 0] AIR -ORc2 on o"
JustifIcatio on -IR OlEmf ' mTeO D•, -.- ev",,

Distribution/ Distribution 1' "i t> i J-U 1"-

Availability Codes JLAZ'HWJ. KR.

Avail and/or Chlef, reehumca.o I fftortla D1vilou"
Dit Specijal

Technical Report CS/E 84-004 August, 1984

DEBUG TESTING AND CONFIDENCE TESTING

Dick Hamlet~~DTIC "
Oregon Graduate Center " IC

Ak E L ECTESOV 19841
Abstract D

-, The strong int o ogra testing has always been failure. When a test fails, it is clear
what to do, and this has led to the maxim that the goal of testing is finding faults Testing
* teoyon the other hand, has tried to connect test success to program correctne. Call the

testin that seeks 'debug testng: and the other confidence testng. A

confidence-testing technique might in principle be used for dcbung, but debuggng tools
cannot establish confidence. Debug testing is an activity intertwined with the whole of
program development, and its theory must take account of this sociological context; debugging
is a human craft. On the other hand, confidence testing theory may take program and test as _.
given, without their human origins. Only by separating the two kinds of testing can
reasonable goals be set for testing theory.

The difference between debug- and confidence-testing theory is illustrated by detailed anays :..
of partition testing, and of experiments to validate debugging test toos Goals for each kind
Of thecxy are propo.e. .'A

Index termr testing theory, debugging, partition esting,. no-rubl*ing effect,-)pbailistic
correctness

" This work was partially s ,, by the Air Force Office of Scientific Research, under grant

F49620-80-C-0004.

C-JRITV CLASSiPICATION OF THIS PAG.

REPORT DOCUMENTATION PAGE
s REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
'a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
'o DECLASSIFICATIONIDOWNGRADING SCHEDULE unlimited.

'4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR CSIE 4-O4 AEQ -TR 84 0 867
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 17a. =&-E OF MONITORING SGANIMATIOP.

University of Maryland (If applicable)
Air Force Office of Scientific Research

6. ADDRESS (City. State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Cod@)

Department of Computer Science Directorate of Mathematical & Information
College Park MD 20742 Sciences, AFOSR, Bolling AFB DC 20332

Ba. NAME OF FUNDING/SPONSORING 1 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION O (if appicable)
AFOSR F 49620-8O-C-0O04, ,

8c. ADDRESS (City. State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Bolig FBDC2032PROGRAM IPROJECT TASK WORK UNITBolling AFB DC 20332 ELEMENT NO. NO. No. CCESSION NO.

61102F 2304 I A7
11. TITLE (Include Security Classification)

DEBUG TESTING AND CONFIDENCE TESTING

12 PERSONAL AUTHOR(S)
Dick Hamlet*

i3a. TYPE OF REPORT 613b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day)S. PAGE COUNT
Technical FROM TO - AUG 84 16

6 SUPPLEMENTARY NOTATION

*Now with the Dept of Computer Science, Oregon Graduate Center, Beaverton OR 97006.

COSATI CODES 1S. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Testing theory; debugging; partition testing; nose-I rubbing effect; probabilistic correctness.

* ABSTRACT (Continue on reverse if necessary and identify by block number)
The strong point of program testing has always been failure. When a test fails, it is clear
what to do, and this has led to the maxim that the goal of testing is finding faults.

Testing theory, on the other hand, has tried to connect test success to program correctness.
Call the kind of testing that seeks failures debug testing, and the other confidence
testing. A confidence-testing technique might in principle be used for debugging, but
debugging tools cannot establish confidence. Debug testing is an activity intertwined with
the whole of program development, and its theory must take account of this sociological
context; debugging is a human craft. On the other hand, confidence testing theory may take
program and test as given, without their human origins. Only by separating the two kinds of
testing can reasonable goals be set for testing theory.

The difference between debug- and confidence-testing theory is illustrated by detailed
analysis of partition testing, and of experiments to validate debugginitest (CONTINUED)

20, DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
f 3UNCLASSIFIED/UNLIMITED 0:3 SAME AS RPT. [OTIC USERS UNICLASS:7IED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEeHONE (Include Area Code) 22c. OFFICE SYMBOL
Dr. Robert N. Buchal , 767- 4939

DO FORM 1473.84 MAR 83 APR edition may beuseduntexhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete ' ';-." UNCLASSIFIED

... .

-. UNCLASSIFIED
WICU4iTV CLAMIPICATIOM OF TRIS PA"

ITEM #19, ABSTRACT, CONTINUED: tools. Goals for each kind of theory are proposed.

7---

--

UN.- AS 1 7 D
SECURITY CL.ASSIFICAION OF Thi$ PAGI

1. The Two Kinds of Testifg

U Program s are tested to investWite their behavior, but with two distinct purposes During
debugging, program are not correct, so good tests expose their faults, and lead to
uderstandng. Debug testing is a subjec whose theory is mostly sociological: the methods
and quirks of programmer and process are important. In particular, programmers deign and
code from specifications, and the faults in a program can often be traced to
misunderstanding at the specification-program interface. With a few exceptions, practical
"testing systems," notably those that use coverage metrics, are intended to aid in debug
testing. Myers [1] has given the best advice for the debug tester. the faults are ther-lok
for them. Theoretical investigation of debug testing is properly supported by experiment, and
these experiments are notoriously difficult to do, because the entire programming process is

l involved, and what works in practice may critically depend on an obscure facet of the proos
Thus we should not expect to generalize beyond the precise situation of the experiment. Such
studies cannot make predictions until the whole of development is better understood, at least

. enough to know what variables to control. And to hope for a theory free of the sociological
coponent, a hard science rather than a soft one, is probably fond. Program development
may not be an art, but it is at least a craft, and so long as people do the development,

.- debugging the results will depend on the human process. Debug testing and validation
experiments are discussed in Section 2.

The second kind of testing follows debugging, and is intended to establish confidence in
the program's correctness. So long as tests are exosing faults, looking for faults is a good

g plan. When all the tests succeed, debugging is evidently over, but no guide such as Myers's is
then available to continue. However, the theoretical situation in confidence testing is much
cleaner. The program and its tests are well-defined objects, whose relationship to each other
need not depend on the human process that created them. A number of test criteria have
been developed to capture the idea that success establishes confidence in correctness. Almost

*' all such measures lead to unsolvable problems, rooted in the problem of deciding whether two
. arbitrary program have equivalent functional behavior. However, it is not very satisfactory

to define a good test only to show that good tests cannot be generated or recognized
malgorthmically. It is more promising to view tests as samples drawn from a program's

behavior space, and to make probabilistic calculations of the program's quality based on the
samples. Probabilistic theories get the right knd of answers, but they are quantitatively

- wrong: the question of sample independence seems to be the root of the trouble. The
present failing of confidence testing are discussed in Section 3.

There is considerable confusion between debug testing and confidence testing. If one
had a method that established confidence in a program's cortness, it could certainly be
used for debugging, as follows:

Tests selected for a buggy program would either expose bus, or predict low confidence
in their absence. In the first case the program needs work; in the second, the test
should be impved In the process, bus will be eliminated and confidence will

"L' "increase until the software can be released.

Unfortunately, them are no confidence-testing methods that can be used in this way, because
there a no theory that establishes a solid connection to correctness yet does not founder on
-neidabity. What happens instead is the following:

L 2

o° o " • " .o o-'-'.°ooo_-_O•_._o_ _'. - ._ _._._ _ _ __-_-_ _-_'_-_ 2oo. . % " o - % " .. o, . % . " o oo " , .'-' '-,"'. ._'-"." -.-"_ _.%-?,. _. .- 'L, .j.- -.. .,.".. -•."..".'. '"" ""•"' " " "" """- " '

Debg testing is done according to some scheme whose implications for program
correctnes are entirely unknown. The testing is successful in that bugs are found and
repire; eventually, no more are found despite consderable effort by the testers. The
cxxnpuite debug test is then thought to establish confidence in the program.

It is obvious that this practical method is indefensible so long as the relationship between the
methods wed and the program's correctness remains unknown.

As an examle of the confusion between debug and confidence testing, a detailed
analysis of partition testing is given in Section 4. Its debug component relies on a part of the
process by which peopl code from operational specifications; its confidence component is a
proof method involving no testing at all.

The goal of diebug-testing theory should be to eaplain why, in terms of the human
proces by which software (and bugs) are created, that a method locates faults. Some way
must be found to eliminate the distorting effect of human cleverness on these x lanations. It
is equally important to esplain the weak ponts of a method-the kind of bugs that it likely
fail to find. Te goal of confidence-testing theory mnaim that of finding the reiondup "
between a successul test and program correctness. A probabilistic theory will be required, in
which the question of test independence is central. Goals and suggestions for future research
are given in Section 5.

2. The Sociolg of Debug Testing

In the abmence of a theory that relates test success to program correctness, many excellent test
systems have been devised for debugging. By far the most common tools are the path
analyzers, which report or generate test coverage of the control structure [2, 3]. A test that
fails to over some path is evidently uelss to uncver a fault on that path. On the other
hand, the significance of covering all paths is unknown, beyond the general result that such
-cverage is not logically related to correctness. Mutation [4, 5], another struxtural-covera"
technique (for expressions), is only a bit beter when coverage is less than perfect, bugs
could evade the test; when coverage is perfect, we know only that some particular bugs are
absent. (However, this is the origin of a good idea, fault-based testing, that does have some
real theory. By restricting attention to particular faults, the theory can sidestep the
sociological question of where thoe faults came from, and concentrate on the technical
problems of surely finding them [24, 251.) Different structural coverage techniques are
difficult to compare. Some are obviously subsumed by others (statement coverage by branch
coverage, for example); some appear to be unrelated (e.g., mutation coverage and path
coveragc) [6, 7]. In keeping with the practical nature of debug-testing schemes, it is easy to
contrive a useful one that defies even comparative analysis (for example, the variation of path

Programming and debug testing are linked by the involvement of clever, dedicated
peo who do both. Experiments conducted to establish or compare the efficacy of debug-
testing methods can be entirely misleading, became they fail to control for this human
invoivement, and for the very special form taken by program built by peop. A good name
for the distortion introduced into a testing experinnt by these factors is the "nme-rubbing

.- ~. .-.

)- 3 '-.r-

'."..-...'........ ,...-.,;...'.........,.-.....-..................-.....,..-,.'....'.'.......".....:...

effect."

Consir the simplest control coverage criterion, that every statement of a program.
must bed in some test The conventional explanation for why statement-coverage teing
works is that the omrac leaves bp no place to hide. But this explanation ignores the
human analysis that goes into finding tests that attain coverage. An unexecuted statement is
examined to see what it does, and this analysis may well uncover some fault in it. Since it
has not been executed, the credit for finding this fault certainly goes to the person, not the
test method. Ono a missed statement's purpose is understood, other parts of the software .
must be analyzei to see why it was missed, and this requires examination of paths and
predicates that mid& lead to it. In the process the tester looking for trouble is hablt to find
it, but not necessarily trouble related to the unexecuted statement. (Perhaps for an omitted
case that uses this statement, the software works perfectly.) In the "nose rubling" procss a
technical expert, looking for trouble, is forced to examine particular parts of the code, and .
there (or nearby) faults are found. Code being what it is, close study almost always flnds
bugs.

It might be intructive to conduct a study of pure nose rubling. Programmers would be
told that they were evaluating a new testing tool, and would be given programs contaning
faults. When these were executed under control of the "tool," an arblitrary pointer into the
code would be printed with an obscure error mesag. This message would be removed by a
change in the program that repaired any fault, and another generated, until all the known
faults were removed Positive results from such a negative experiment would cast doubt on
naive "evaluation" of testing tools.

Howden 191 has conducted a different kind of empirical study: he applied path analysis
to a few small program to find its worst-case performance. He counted the method a
auccess only when the human contribution was eliminated-no, matter how the paths were .
covered, the fault led to an observable failure. An important result of this study was the
difficulty of performin the analysis (necessarily by hand)-the technique cannot be used on
even moderate-size programs, so it is unlikely that the study will be extended. The numerical
results (that path testing necessarily would egxose about 65% of the errors in 11 toy program.
from a textbook) cannot be trusted as an evaluation of path testing.

The sociological theory of debug testing must take into accouit the program_
development proces, and explain the efficacy of bug-finding methods in terms of the human
crafts of design from specification, coding from design, and testing a pogram agaimt its
specification. As we learn more about the ways people carry out these tasks, we will learn
better debugging methods and! why they expose the mistakes people make. An example of
such an amlOs is given for partition testing in Section 4.1.

3 Conldeuce Theory and its Failings

he initial attepts to udestand why tests seem to inprov the confidence that a prograrn-
contaim no more faults were related to progam correctness. The faure of this "absldute""
theory has more recently led to the use of probabilistic ideas.

....4......,,.
.... o *.."

3.1 b D, -dons and Negative Results

In o... t. speak precisely, we adopt the functional semantics of Mills [10, 11].

DefInition. The meanng of a prowr P is the mapping from inputs to wtputs it conputes;
this functional meaning is written . If P executes successfuly on input x,14(x) is its
output. A specification f is a computable function that P should compute. A test T !
conists of a set of input values for P. Since testing is actually to be carried out, T isfinite,
and 1i is defined on T. Atestissuccessfidwheneachinputin T meets the specifcation.
That is, I,

Vt E T (j (t) - f(t)).

A pecification is effective iff there is a mechanical way of deciding if any Oen test is

successful. Program P is correct (with respect to specification) iff f c

This definition allows the program-function domain to be larger than that of the
specification-intuitively, by failing to specify what the program should do, no one means to
require it to blow up.

The most important definition in testing theory must capture the relation between - ,.
success of a test and correctness of the tested program. Such tests are what we are seeking.
Howden's definition at first seems to be a direct translation of the intuitive idea:

Dermition. A test T is reliable (Howden [9]) iff it cannot succeed without P being
correct: :9

T successtulfor P(withrespect to f)=> P correct.

A basic negative result of testing theory is that the problem of deciding if an arbitrary test is
reliable, is usqolvable.

Theorem: There is no a~gonthmn for deciding of program P and test T whether or not T
is reliable for P.
IPrmf. By reduction to the program equivalence problem; see [9, 12, 26).

(it is disturbing that the speification enters these proots in the form of a poWam Of some
sort, indicating that including the idea of correctness forces any imagined algorithm for
deciding reliability to be imprecise--for how can the specification be "given" to the

igorithm?)

In one pathological case a reliable test does not exist: when poam and specification
disagree only because the program blows up where it shoWld not. The points not in the
domain of the program function cannot be part of any test by our requirements.

Howden's definition has been criticized [13, 14 because it does not capture an idea
important in poogram maintenance: a trivial program change can turn a reliable test into an
umreliable one. If a porim Is correct, then any test-evan the empty test-is reliable. Thus -

reliability is attained by perfecting the poam, making tea points superflou. Ths is not at

-

all the intuitive idea that the test is augmented until it catches all the program faults.

Perhaps it better captures a test expanding to force correctness of P to say that if the
test is successlul for any program, that program must be inditnuhable from P on the

specified domain. This gets at the idea that a test is lacking if any failure can escape it.

Defi"tion: A test T for program P is valid with respect to specification f iff for each
- programOQ,

T sucessl for Q (with respect to => i f .

The definition does not state that P must be correct, or even that T is succesful for P,
bit we can prove this.

Theorem: If there exists a valid test for P with respect to f, then P is correct (and hence
any test is successful for P).
Proof. Since f is computable, let program Q compute it, f = f. Suppe that T is
valid for P. Because Q computes f, any test is succesful for Q, including T, so

But 0 computes f, so f f, and hence . f and P is

Theorem: A valid test is reliable, but a reliable test need not be valid.
Proof. Suppose T is valid for P. Since P is correct, any test is reliable, in particular T.
On the other hand, consider a correct program P with nonempty domain D and the empty
test 0, which is reliable. 0 is not valid, because there is a program Q which differs from P
on D, yet 0 is successful for 0, violating the definition.

The theoretical situation for valid tests is even worse than that for reliable ones: the only
valid tests are exhaustive. This result captures the sense of Dijkstra's aphorism that tests can
never demonstrate the absence of faults [15].

Theorem: A test is valid for program P with respect to f iff it includes dam f.
Proof. It is obvious that an exhaustive test is valid. On the other hand, suppose that paint z
E:domfisomittedfrom test T. Thenconstruct 0 to be exactly the same as P except
that 0 contains an initial test for z which makes their outputs differ at that point alone.
Then T is successful for 0, but since 1 (z) ? 1 (z), T is not valid.

Since tests must be finite sets according to the definition above, only a pram for a
specification with finite domain could have an exhaustive test. The requirement that the
program not blow up for any test point causes less trouble than for "reliable": although
determining a program's behavior on arbitrary inputs is an unsolvable problem, human

inguity would be used to mater it on a given domain.

("Reliable" and "valid" have another sense in some literature, notably [161; however,
the citicism of 117] puts the other definitions out of circulatin.)

The definition of "test" itself is chosen to make testing algoithmic-tests can in
principle always be performed. It is desirable that a testing method-a scheme for judging test
pints-have a simla p ."pe.ty.

6[**7. * * * * ** % *- - ...
.. : ...

~~~~~~~~~~~~~~~~~~~~............... - ..--..-...... .. .......... ........ ------. .. -.-...-.-%?-



. . %-°

Delmition: A testing method M is a three-place predicate. M (f, P, 1) is defined to hold
when the prWam P with specification f subjected to test T has been tested according to the ' "

method. A testing method is algorithmic iff M can be mechanically evaluated

This definition is imprecise in that the form in which a specification might be supplied to the
predicate is difficult to imagine. However, so-called "structural" methods ignore the .-
specificatim except to require successful tests. Tlen the difficulty is hidden by assuming an
effective specification. For example, branch testing has the predicate M,(f, P, ") that is true
iffT causes each branch of P tobe executed, and T is successful for P. Branch testing is
algorithmic for an effective specification, because it is easy to monitor execution of all branch
points. Similarly, mutation testing is algorithmic if equivalent and long-running mutants are
defined to be stillborn. (This assumption cannot be realized in practice.) _

If "reliable" and "valid" are taken as testing methods, the first cannot be algorithmic by
the theorem that reliability is an undecidable property; the second is algorithmic for finite-
domain specifications by the theorem that an exhaustive test is valid (with the heavy proviso
that the specification domain be given). Algorithmic methods do not in general attain either
reliability or validity. Validity requires an exhaustive test of a given finite specification .
domain. For reliability things are a little more difficult.

Theorem: No algorithmic testing method can always have reliable tests.
Proof. Suppose an algorithmic method with predicate M were available, such that whenever
M (f, P, T) holds, T is reliable for P. Then to decide reliability of an arbitrary test T' for
programP, find by trial a set T such that M (f, P,'T). SuccessonTmeansthat Piscorrect.
In that case T' is also reliable, since any set is. On the other hand, if T is not successful,
then T' is reliable iff it is not successful. In any case, the reliability of T" has been
determined, contrary to the theorem above. Hence there can be no reliable algorithmic test
method as supposed.

Non-exhamustive algorithmic methods are therefore not useful for confidence testing,,
insofar as the ideas of "reliable" and "valid" capture the connection between testing and
correctness.

3.2 Probabilistc Theores

rThe analogy between program testing and quality-assurance for mass-produced goods is
extremely attractive. When the final product of an assembly line is to be checked for defects,,
the only sure method is to inspect each item. Since this is impractical, samples are inspected,
and the confidence that the sample predicts the quality of an item chosen at random can be
obtained from statistical theory. In the analogy, the line samples correspond to program tests,
from which we would like to calculate the confidence that no faults exist, that is, confidence
in the success of arbitrary program executions as yet untried.

The anaioy must be faulty, however, because the results from the simplest theory are _
radically wrong both qualitatively and quantitatively. In the situation that N test points
chomen at random sMeed, and one requires 1 - a confidence that the pmbability of
correctem is p, the number of points required [29] is

h N =lg alo p.

-. 7



S. .

The qualitative error is that this result is independent of the form and size of the program
being tested. Experience has shown that the fault coumt is roughly proportional to program
size [28], and at least for program with many independent paths, N must then increase with .
the program size. The result is also independent of the domain size, and random testing
intuitively should be less effective for large domains. Quantitatively the formula is also
intuitively wrong, since (for example) it predicts that 45 test points are sufficient to establish .. '-.
90% confidence that the correctness probability is 0.95.

Before we analyze the failure to orrespond with intuition, it should be noted that the
simple probailstic theory gives just the right kind of statement. It predicts the result of
executing the tested progan, and does so entirely in terms of information about the test and
program. The quantitative results could be used to decide if the program is ready to be -: -_
released.

The most obvious place to question the quality-control analogy is in the selection of
"random" samples. When products come off an assembly line, all are equal; but some .* ..

program inputs are more equal than others. Each program has an "operational distribution"
characteristic of its real use, which weights input classes unequally. The simplest statistical
theory demands that to predict confidence bounds for executions drawn from such a
distribution, tests must be drawn from it as well. When the operational distribution is
unknown (as it must be for a new application) the theory cannot be used, because far more
points might be required to cover the real distribution, drawing tests from the wrong one.
Furthermore, input distributions do not help to explain the failures mentioned above: using
the correct distribution it is still unreasonable that the required test size does not depend on
the program or domain size, and the numbers are still wrong.

What does it mean for samples from a manufacturing process to be independent? The
essential feature is that there be no correlation between defect-producing operations and the
ample selection. For example, choosing every Nth item from a fine seems reasonable until it _ .

is noted that (say) eactly N components arrive at some workstation in a group-the samples
then might all contain the first component from the group, which might be special in some
way. In the testing analogy real indepen is very difficult to obtain. Tests do not
penetrate programs in any uniform way, so each actually "sees" very little of a large program.
Furthermore, many tests may see the same fragment, for all that they were not selected to do
so. Program fragments are not uniform: they are prodxed by different people, under
different circurnstances, to different standards. To attempt to predict the quality of one by
examining another is obviously foolish. To turn the analogy around, if manufacturing quality
aance were like program testing, samples would be examined only in part, that part
depending on the choice of sample in a way that might correlate with defects.

This way of okldng at quality control also clarifies the role of test weighting
distributio... In quality control the analogy would be to examine only scattered parts of each
sample, and concentrate on some particular parts. Ths would subvert the whole purpose of
quality control which is to discover the source of defects and eliminate it. The inspection
would not be determining that the item was being made correctly, but only that its defects
were not glaring. In the case of programs, testing from an input distribution investigates not

vorrtwes, but how uncommon failures are.

To crect the flaws in sampling theory, some kind of code dependence mist be added,

so tha samples cover not only the inmt space, but the tetual program space as well.

8



4 Analysis of Partition Testing

Becamuse the idea of correctness comes from program proving, the first testing theories had the 6
same ongin. Proof-based theories might be described as program proof methods that
incorporate tests. It has long been thought that test success might simplf program
verification 118]. For example, for a particular program, it might be possible to cotrut a
proof of correctness that was based on clever (non-algorithmic) cxice of a reliable test. A
person would prove that the test was reliable, then the test would be conducted, and its
success would complete the proof [19]. Or, a person might prove that certain faults in a
program would necessarily lead to failures, then establish their absence by conducting a
successful test 124]. These general methods cannot be criticized, but they do not lead to a
theory of confidence testing. Instead of tests, they really analyze programs.

Beginning with [16], proof-based testing theory has become identified with the much
narrower class of methods called "partition testing," in which the program's input domain is
broken up into equivalence classes, and test points are selected to cover these classes. The
essential idea is that the equivalence classes should be "treated the same" by the program and
the specification. Tlis notion has been used in a fault-based theory [17] and in work based
on symbolic execution [21, 22]. We now analyze "treated the same" partitions first as a
confidence-testing idea, then as a debug-testing idea.

4.1 Partition "Testing" is a Program-proving Idea

Testing based on input partitions for identical output does lead to correctness, as the
following trivial theorem shows. Define the same-output equivalence relation for a program
P as

= (x, y) I(x) = (y).,

* Define the same-output equivalence relation for a specification S as

" So= (x, y) S(x) S(Y)I.

These relations define partitions of the input space, whose intersection classes have members
that are literally treated the same. Members of such a class are all specified to have a single
output, and furthermore do have a single output when supplied to the program. In diagonal
partitions the specified and actual output is the same; in off-diagonal partitions the outputs

• "differ.

Of course, if partitions are actually to be the source of tests, they must be of finite
index. However, if the definition of a test is relaxed to allow "infinite" input sets, the results

"'* of this section continue to hold. The case in which the program domain is smaller than the
specification domain deserves special comment. Here there exist inputs for which the
program blows up, but should not. Such inputs occur in no intersection partition, because
they are nt in any partition of P. It is the primary virtue of tests arising from

* speifications that these inputs not be lost, and this can be arranged by adding an "undefined"
. partition to those of P' but not to those of SO. This creates off-diagonal intersection

partitions for failh of definition in P.

9
.........................................



-.. . . . . . . - °

IToem: A test using an arlitrary element from each intersection partition of the P" and
S' relations is successful iff P is correct with respect to S.
Proof. (Correctness as a consequence of test success.) Each of the non-diagonal partitions
must be empty for the test to succeed, because by definition P is in error for all points
therein. Consider then any nanempty diagona rtition D, and any x E D. Some t E D

*" was involved in the successful test, andhene _P4(t) S 5(t). Butby definition of D, S(x) =
S(t) and 1_. (x) = . (t), hence P is correct, because x was an arbitrary input. (The
reverse implication is trivial.)

The proof shows that there is an easier way to state this result:

Corollary: The off-diagonal intersection partitions of P' and S'O are empty iff P is
correct.

The obvious practical deficiency here is that the P' and S partitions are seldom of finite
index. For testing, however, the method cannot be ised at all, becae repesentatives of the
intersection partitions cannot be obtained in practice. Consider the 'triangle problem" for
example. Triples of integers (A, B, C) representing triangle sides are to be classified into the
textbook types such as "obtuse scalene." The possible outputs are a finite set, and thus SO

determines a natural finite-index input partition. The natural program that solves the
problem has a path corrspoing to each possible output, so its path equivalence classes are
the partitions of P'O, also of finite index. Choosing a point from a specification partition like
"equilateral" may be easy, and a successful test execution shows that the intersection with the

I"equilateral" program partition is not empty. But it does not prove correctness to proceed in
this way, because there is no way to select points in off-diagonal partitions (such as: specified
"equilateral" but the program prints "right isosceles")--indeed, the Corollary states that these

-. partitions must be empty for correctness.

Thus in its simplest form, use of treated-the-same input classes is a proving technique

that makes no use of testing at all: the off-diagonal partitions must be shown to be empty,
necessarily without testing; then there is no need to try points in the diagonal partitions.

There are natural input partitions for specifications and programs broader than those of
S"O and P'. If these are of finite index, or have easy-to-find representatives, they are .._
candidates for a proving methl; however, the same argument shows that such partitions are .

not useful in a confidence testing method. For example, supose a first-order logic
* specification is of the form

SIi(x), 0 1 (X,y)-
l(x), O(xy)

where the I. are disjoint input assertions, and the corresponding Oi are output assertions

for those inp Let I describe the specified domaim

S. I= V I 2 V .. V In

* and

10



~~~~~~. - . . ... . .... .. ...

Si=~x !i(x)/\E y Oi(x, M

for each 1 e i : n ame inxt partitions for each part of the specification. (The inputs not in .
any partition are those for which the specification fails to c Atrain the result at all, became
-I holds; and, those for which the specification asks the impossible, because there do not

exist outputs as requkeu)

If a program P is to meet this specification, similarly let

Pi= IXi = y/A1 (,y)I

and add

Pn+ = 1 x Ix tPi, I i nj :.

to cover the problem with failures described above. Intersecting specification-defined and
program-defined partitions, we obtain classes that are "treated the same" in a wider sense
than that used above. The same results hold and there is the same difficulty in test selection.
The off-diagonal partitions are now those for which somne input assertion Ik holds, but either

is undefined or Ps output fails to satisfy Ok; these are not easy to identify. If they can
be shown to be empty, the proof of correctness is complete without reccurse to tests.

This analysis shows that the idea of "treated the same" partitions cannot be used for a _
confidence testing theory. Correctness turns on empty error partitions that are difficult to I
identify, and unrelated to successful tests on other partitions. Mth partitions of infinite
index, the non-diagonal number is also infinite, and concentrating on diagonal partitions [22]
does not lead to either a proo of correctness or a confidence test.

3-.

4.2 Partition Testing for Debugging

As a debug-testing method, partition testing is valuable, but because of the particular way in
which human beings create programs from specifications. The great virtue of any test lod
on a specification is its potential for detecting missing program logic. It is a common
pogramming blunder to omit cases that the specification requires. Because the chance of
coincidental correctness is small when part of a program has been omitted, any test point in
the specification partition will expose the fault. Furthermore, narrow input partitions which
have both a specification- and program-based meaning are good intellectual tools for
debugging. When a failure occurs for somne input, its characterization both locates the fault
(from the program-based partition) and indicates what should be done (from the
specification-based partition).

It is an open question whether program- and specification-based partitions should be
similar (for example, when an operational specification is taken to be prescriptive), or
intentionally different (for example, when a declarative specification technique is used with -A

conventional programs). In the first case the intersection partitions for a correct program
differ little from the partitions before intersection; in the second case nothing forces this to be
true. Partition boundaries are widely held to be important, because in programming it is
commoni to blunder by shifting boundaries. When tis happens the boundary becomnes, an
off-dagonal intemection partition. But boundaries have this intuitive significance only when

11 .-. *,

........ ,....... . .".....- ,-,,..-....,,~~~~~~~~~~............. ... ""......"...... '..,..." _.. , , . ",.x ', '

the specification is prescriptive. Otherwise input distinctions that "should" be made have no
significane. For example, for the absolute value function it is common to specify the

3 tl behavior differently for positive and negative inputs, But the pgmmer who writes

real procedure alsval(x); real x; value x;
abgval sqt(xi2)

is not observing the positive-negative distinction, and separating those cl e will not help to
find bugs for this program. When specification and program partitions are very different, as
in the DAISS system [30] using data-tye axioms and conventioal pWogams, it is difficult
to charaeze and think about the intersection partitions. It may even be difficult to fEnd
points in the partitions [23]. The precision of partitions does not suffer, however, and the

- distinct nature of specification and program makes bug repair easier. In compenstion for lint
intuitive understandi of partitions, the nose-rubbling effect is given maximum play: the
Programmer asked to cover an incomprehensible partition is led to study a narrow part of the
specification and program, and irdbably to discover bugs there.

The very properties that make partitions useless for confidence testing are advantages in
-. r debugging, particularly when specification and program partitions are similar. For example,

in [221 specification and progam are both predura, and partitions are based on path claies
in each. The specification classes thus have nothing to do with comrect behavior, and only

- serve to distinguish arlitrary cases. Within such partitions Points are not "treated the same,"
but symbolic execution is used to cover all points in a class so selection does not matter.
Where specification and program classes exactly coincide, points have the significance that a
Prescriptive specification was followed. Where they do not, the irospect of failures is good.
The programmer has not followed the specification, but chosen to do it another way, and that
raises the pcWsilxlity of left-out cases, cases treated incorrectly, etc. Each such possibility is
localized in a partition. However, it should be noted that the method performs best when
there are not very many differences, when the prescriptive specification was followed except

K for a few, unrelated deviations This is probably just the well-known phenomenon that path
classes are not helpu in discovering that something is missing from code or specification.
For example, the method of [221 does much better on a triangle program that is nearly right
than it does on the original version 131 with the "illegal inpult" ogic omitted.

Thus the success of partition testing for dehigging turns on nose-rubling when the

Specification is unli the program, and on bomdary errors when they are like. In both cases
the precison of the clas in which a failure is found is helpful in locating the fault.

S. Goals and Prospects for Testing Theory

"Absolute and corectness-based" best characterize existing confidence-testing theoes. They
have shown that reliablility and validity canno be established algodthmically, then investigated

L. restricted caes which can be sdved. Perhaps fault-based testing is the most successul such
theory. The basis in correctness cant be abandoned in a confidence theory, but the

12

• .*.-. '*

4

absolute ideas could be replaced with probabilistic ones.

A confidence theory must at a minimum apply to any particular test situation in which
no failures are observed. It can be argued that no confidence whatsoever can be placed in a
program with known faults, certainly true if its users are malicious. The situation in which a
few obscure failures is tolerated is an important practical one, but the idea of probabilistic .

correctness cannot apply to it. We therefore should consider only the release situation:
software does not fail on any test conducted, and since the testers are at their wits' end, there
is nothing to do but let the users have it. The primary goal of confidence theory is therefore
to assign a probability of correctness to any release test. Ths probability must depend only on
the test situation, although more information about the test and program may have to be
collected than at present. For example, if a theory involves the textual distribution of tests,--
as suggested in Section 3.2, then that distribution must be measured.

It is posible to perform real experiments to validate a probabilistic confidence testing
theory. Software field performance can be compared to predictions of a theory, but there are
many confounding factors so great care is required. For example, field failures are mostly .
nisuxderstandin , and important as these are for the whole process of software development,
they apply to flaws in documentation and specification, not to release testing. Because
validation is so difficult, it is important that a testing theory be plausible. Plauibility can be
gained through negative predictions: there are many oppxrtunities for a theory to poperly
assign a low probability of correctness. For example: a large program or a large specification
domain subjected to a small test; a test that fails elementary control or data coverage criteria; 74
tests generated by third parties lacking knowledge of the specification and program; "devil's
advocate" tests generated in an attempt to have no significance. All these provide
opportunities for a confidence theory to denigrate the test, and a plausible theory would do
so.

A secondary goal of confidence-testing theory is the analysis of testing method. This"
does not follow from the ability to analyze the release-test situation. It may happen that the
analysis is mathematically intractable, in the sense that closed-form descriptions cannot be
ottained for all tests that follow a given method. It can happen that two methods cannot be
compared, because the intra-method variability is larger than the difference between them. If
the arguments in Section 2 are correct, exisdng methods will be difficult to compare, and will
not establish a high degree of confidence. Such an intuitively correct result would be a
plausibility argument for the theory that can obtain it. As another example of probcbilistic
theories giving the right kind of results, an analyss of partition testing vs. random testing [27]
shows that even under conditions favoring partition testing, it does not increase confidence in
the correctness of the program. This agrees with the analysis of Section 4 that partition
testing has no confidence component.

Even if there were a plausible confidence-testing theory, it would be important to have
theories that explain the strengths and weaknesses of debug-testing methods. The primar'
goal of debug-testing theory is to connect the human programming process, and the faults it "
introdues into programs, with the process of looking for those faults. Perhaps such a theory
could be used to eliminate human mistakes, but it is better to build tools that detect them.
Good programmnlanguge compilers use just this idea. Although it might be possible to
analyze syntax errors and through training and discipline eliminate them at the human source,
it is much better to just make sure they are caught by the compiler. Then the programmer
can concentrate on other thing, knowing that blunders will be caught. A debuing J

technique might be based on conifidence-testing theory, as suggested in Section 1, but the
theory would give no guidance beyond the information that a successful test of a buggy
Ixnwam predicts a low probablity of correctness. In contrast, an exercise method like branch
testing can be argued to be useful becaus.e (for example) it forces test in wich oop code is
executed zero times, and programmers have been known to ignore tis case.

In the confuson of debug- and confidencetesting theory, most of the important
questions about debuggin have not been asked. For example, a large systemi might be
constructed as a collection of modules uing the technique of information hiding. What kinds
of mistakes do programmers tend to make when following tis method? What kind of te
will expose the faults? Can those tests be conducted module-by-modide, or do they
necessarily involve the whole system? The answers to such questions are an important part of
a debug-testing theory of development using information hiding. 6

Acknowledgements

Dave Preston and David Barton found several mistakes and confiions in this paper when
they read it for a graduate seminar.

References

1. G. Myers, The Ant of Software Tesfing, Wiley, 1979.

2. C. V. Ramamoorthy, S. F. Ho, and W. T. Chen, On the automated generation of
program test data, IEEE Trans. Software. Eng. SE-2 (Dec., 1976), 293-300.

3. E. F. Miller and R A. Melton, Automated generation of testcase datasets, 1975 Int.
Conf. Reliable Software, Los Angeles, 1975.

4. R. DeMillo, R. Lipton, & F. Sayward, Hints on test data selection: help for the practicing
programmer, Compwer 11 (April, 1978), 34-43.

5. R. Hamlet, Testin programs with the aid of a compiler, IEEE Trans. Software Eng. SE-3
(1977), 279-290.

6. & Rapps and E. . Weyuker, Data flow analysis techniques for test data selection, Proc.

6th iCSE, Tokyo, 1982, 272-278.

7. M. D. Weiser, J. D. Gannon, and P. R. McMullin, Qxnparisn of test coverage metrics,
midtted for publication.

8. M. R. Woodward, M. A. Henneil, and D. Hedley, A measure of control flow complexity
in program teat, IEEE Trans. Software. Eng. SE-5 (Jan., 1979), 45-50.

14
.- .%°-. * ~

"-' 9. W. Howden, Reliability of the path analysis testing strategy, IEEE Trans. Software Eng.
SE-2(1976), 208-215.

S.
10. H. Mills, The new math of computer programming, CACM 18 (Jan., 1975), 43-48.

11. R. Hamlet and H. Mills, Functional Semantics, University of Maryland TR-1129, Feb.,
1983.

12. R. Hamlet, Testing programs with finite sets of data, The Conp. J 20 (Aug., 1977),

232-237.

13. E. Weyuker, An error-based testing strategy, New York University TR 027, Jan., 1981.

14. R. Hamlet, Test reliability and software maintenance, Proc. COMPSAC 78, Chicago,
Nov., 1978, 315-320.

15. 0-J. Dahl, E. Dijkstra, and C. A. R. Hoare, Structured Programming, Academic Press,
1972. .

16. J. Goodenough and S. Gerhart, Toward a theory of test data selection, Proc Int. Conf.
on Reliable Software, Los Angeles, 1975, 493-510.

17. E. Weyuker and T. Ostrand, Theories of program testing and the application of revealing
subdomnain, IEEE Trans. Software Eng. SE-6(1980), 236-246.

18. M. Geller, Test data as an aid in proving program correctness, CACM 21 (May, 1978),
368-375.

19. R. Hamlet, Theoretical issues in software engineering TR 82/8 Department of Computer
Science, University of Melboumrne, Parkville, September, 1982.

21. D. Richardson and L. Clarke, A partition analysis method to increase pr
* reliability, Proc. 5th Int. Conf. on Software Engineering, San Diego, 1981, 244-253.

22. D. J. Richardson and L A. Clarke, On the effectiveness of the partion analysis method,
Workshop on Effectiveness of Testing and Proving Methods, Avalon, CA, 1982.

23. J. Gannon et al., Data abstraction implementation, specification, and testing, TOPLAS 3
(July, 1981), 211-223.

24. L Mardi, A Theary of Error-based Testing, Ph.D. thesis, Department of Computer
* Scienc, University of Maryland, 1983.

25. S. J Zeil, Perturbation testing for computation errors, Proc. 7th ICSE, Orlando, FL,
1984, 257-265.

26. E. J. Weyuker, The applicability of program schema results to programs, Int. J.
Covnpiaer and 8~ormaion Sci. 8, 387-403.

27. . Duranand S. Ntafos, A report on random testing, Proc. 5th Int. Conf on Soft.wr
1L5"-'. "" 15 " '1

,,.-.........-. .. -.-. ,...................... . -,.... -:-.,.:

* -. . " " * °

" Engineering, San Diego, 1981, 179-183.

28. M. V. Zelkowitz et al., Case studies of software engineering practices in the US and .
Japan, to apear in Computer.

• .-: 29. J. Duran and J. Workowsld, Toward models for probailistic program correctness, Proc.
ACM Software Quality & Assurance Workshop, San Diego, 1978.

-R 30. J. D. Gannon, P. R. McMullin, and R. G. Hamlet, Data abstraction implementation,
specification, and testing, TOPLAS 3 (July, 1981), 211-223.

16a.

a%- .

°- a-
6-"-._ '

::: i:?-i?*

..

. .2 .4'~

I.,J

*~ I.4t

~ lip

10J

-4 0
In

4tl

